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The problem of the pressure on a membrane of a punch in the form of an elliptic paraboloid is investigated assuming that the 
contact area is small. By means of the method of matched asymptotic expansions, the problem of unilateral contact is developed 
for an inner asymptotic expansion, the solution of which is based on results for the case of an infinite membrane [1]. The influence 
of the boundary of the membrane is modelled in formulating the asymptotic conditions at infinity. The relation between the 
force impressing the punch and its motion is determined. The sensitivity of the parameters of the elliptic contact area to the 
dimensions of the membrane and the position of the centre of the punch is investigated. A refined asymptotic model of contact 
interaction is proposed. © 2000 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  I T S  D I S C U S S I O N  

Suppose  a m e m b r a n e  g2, fas tened along its con tour  ~ 2  and unde r  un i fo rm tension T, is pressed by a 
punch  in the fo rm of  an elliptic parabolo id  

q,(x°;x) = - x ° )  +(ZR2)- (x2 - x ° )  2 (1.1) 

where  R1 and R 2 are the radii  o f  curvature  of  the main  normal  sections of  the surface of  the punch  at 
its apex x ° E ~ .  T h e  t ranslat ional  d i sp lacement  of  the punch  will be  deno ted  by ~0. 

The  lackling funct ion of  the m e m b r a n e  satisfies the p rob l em (see, for  example ,  [2,3]) 

-TAxu(x)>~ O, u ( x ) ~  > 8 o - ~ ( x ° ; x )  (1.2) 

Axu(x) [u (x ) -  ~0 4- tl)(x°,x)] -- 0, x = (x I ,x2) E 

u(x) = 0, x ~ ~ (1.3) 

We will investigate p r o b l e m  (1.2), (1.3) on the assumpt ion  that  the contact  a rea  E is small. We will 
designate e as a sraall posit ive p a r a m e t e r  and assume that  

R, : = = (1.4) 

where  ~0 and R~ and R2 are comparab l e  with the distance do f rom the point  x ° to the boundary  0f~. 
The  contact  a rea  Y~ [where the equali ty sign holds in the second inequali ty of  (1.2)] is not  known in 

advance.  With cer tain constraints  (see [2, Chap te r  5, Sections 3 and 6]) it is possible a priori to assert  
that  E is a simply connec ted  region with a smoo th  boundary  0E. In  accordance  with the adop ted  shape  
of  the punch  (1.1), the p res su rep(x l ,  x2) = TAxaP(x°; x) t ransfer red  by the punch  to the m e m b r a n e  is 
uniform:  

p = T(R, + R2)(RIR2) -I (1.5) 

Remark 1. By virtue of the maximum principle (see [4, Section 2.2]), the relation u(x) ~> 0 results from the first 
inequality of (1.2), taking condition (1.3) into account. This inequality enables is to obtain an estimate for the contact 
area (the coincidence factor [2]). Thus, taking into account the second inequality of (1.2), we find that the region 

is undoubtedly encompassed by an ellipse with centre at the point x ° and with semiaxes ~/(280Ri) and ~/(280R2). 
Consequently, under condition (1.4), the size of the contact area will be of the order of ed0. 
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Earlier [1], an accurate solution of the contact problem for an infinite membrane was obtained. The 
semiaxes c0(1 + m) and c0(1 - m) of the elliptic contact area are expressed in terms of the force P 
acting on the punch 

Rf - R 2 c~= P(R~+R2),  m =  ," P=SS P(Yl,Y2)dyldY2 (1.6) 
4~T  R t + R 2 y~ 

In an attempt to use formulae (1.6) in the case of a finite membrane, the question arises of how the 
force P depends on the displacement 80. Note also that, generally speaking, the centre of the contact 
area is displaced in relation to the apex of the punch and, consequently, to ensure a vertical position 
of the punch, it is necessary to apply to it the moments 

Mt = IS (y2 - x ° )p (Y , ,Y2 )dy ,  dy2, M2 = -55 (Yl - x ° ) P C y ) d y  ( 1 . 7 )  
Z 

Substituting expression (1.5) into the final equality of (1.6) and relations (1.7), we find 

P = P l Z I ;  M ~ = P l Z l ( x ~ - x ° ) ,  M 2 = - P l Z I ( x ~ - x  °) (1.8) 

where I ~ I is the area of the required contact region, and x~ and x~ are the coordinates of its centre of 
gravity. It is clear that the quantities mentioned should depend on the shape and dimensions of the 
membrane and the position of the punch. 

Problem (1.2), (1.3) was studied within the framework of the theory of variational inequalities [2, 5, 
6]. Algorithms for its numerical solution have been proposed ([7, 8], etc.). High-quality methods have 
been developed ([9], etc.). An asymptotic solution of the problem of the equilibrium of a loaded 
membrane supported by several small, plane, unilateral supports was obtained in [1]. Below, we use 
the method of matched asymptotic expansions (see [11-13], etc.), confirmed in [14] for the unilateral 
contact problem for a three-dimensional elastic body. The solution of the problem for a boundary layer 
is constructed using results obtained earlier [1]. 

2. E X T E R N A L  AND I N T E R N A L  A S Y M P T O T I C  R E P R E S E N T A T I O N S  

We will denote Green's function with a pole at the point x ° by G(x°; x). When x ~ x °, the following 
asymptotic formula holds 

G(x°;x)= 1-~ln r ° ,  +o(I) (2.1) 
2n I x - x V l  

where r0 is a constant having the dimension of length. 

Remark 2. In the case of a simply-connected region f2, the representation G(x°; x) = -(2n) -1 In If(z°; z) J is 
known (see, for example [15, Section 43]). Here, z = xl +/x2 is a complex variable, and ~ = f(z'; z) is the conformai 
mapping of region ~ onto the interior of the unit circle I ~ [ < 1, withf(z°; z °) = 0. Since the function (z - z°)-lf(z°; 
z) has, at the point z °, a removable singularity and 

lim f (z°;z)  - df(z°;z)l~=z°l =- f ' ( z° ;z°)~O 
z~z ° z - z-'----if" - dz 

formula (2.1) acquires the form 

G ( x  0 ; x )  = - ( 2 x )  -I  In(I z - z 0 II f ' ( z  °; z 0 ) I) + o ( I )  

0 0 1 The quantity r 0 = | f ( z  ; z ) [ - is identical with the (internal) conformal radius of the region ~2 with respect to the 
0 .1) ff point z = xl +/x2 (see [16, Section 1.3] and [17, Section IV]). 

Far from the contact area, we will unite the asymptotic representation of the solution of problem 
(1.2), (1.3) in the form 

v (x) = P G(x°;x) (2.2) 
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On the basis of an analysis of the axisymmetrical problem, in view of (1.4) we can write 

P = eP* (2.3) 

In the neighbourhood of the contact area ~:(e) we will introduce the "extended" coordinates 

~j = e-1 (x - x °) (2.4) 

Then, if we take into account the new scale, the distance from the apex of the punch to the edge of the 
membrane becomes equal to e-ld0. Hence, the problem for the inner asymptotic expansion is formulated 
over the entire plane. 

Relations (1.2) give 

-a~w(~;O ~> 0, w(~;~) I> ECa0 - ¢~*(~)) 

A~w(e;~)lw(e;~- e(15~ - q)*(~))] = 0, ~ R 2 (2.5) 

(I)* ( ~  = (2R~)-'~l 2 + (2 R;)-I ~ 

Boundary condition (1.2) is replaced by the asymptotic condition of the behaviour of w(e; ~) as 
I~1 ~ ~o, which we obtain as a result of matchingwith (2.2). 

In the matching zone, where ~/(e)d0/2 ~< Ix - x-°l ~< "[(e)do or, which is the same, d0/(2~fe) ~< I~1 ~< 
do/qe, after substituting of (2.1) and (2.3) into (2.2) and replacement of the coordinates inverse to (2.4), 
we have 

/ v (e;x° +e~) = In .r--~°~, + O('~/-e) (2.6) 
I ~,2rc ~Igl  ) 

Therefore, formula (2.5) is completed by the following 

w(E,¢)=eP*In r° +O(l~l-J), I ~ I ~  oo (2.7) 
2~T e l~ l  

Thus, the construction of the asymptotic form of the initial problem to a first approximation has been 
reduced to solving the problem of unilateral contact for the boundary layer (2.5), (2.7) and, in addition, 
to expressing the quantity P* in terms of 50. 

3. T H E  E Q U A T I O N  R E L A T I N G  T H E  M O T I O N  OF T HE  P U N C H  W I T H  
T H E  F O R C E  A C T I N G  ON IT 

The solution of contact problem (2.5), (2.7) for an infinite membrane will be sought in the form 

w(s; ~) = EW(~) (3.1) 

Denoting by Y~* the corresponding contact area with the boundary aE*, we replace the unilateral contact 
condition (2.5) (see [2]) with the relations 

A~W(O = O, ~ e R 2 / ~  * 

w(~) = a~-¢,*(O, ~eaz*  

a i w ( 0  • _l =-(Ri) ~i (i=1,2),  g~OZ* 

The condition at infinity is rewritten as 

w(~)= P• In 
27tT 

(3.2) 

(3.3) 

(3.4) 

r° +O( l~ l - I ) ,  I~I--) 0o (3.5) 
el~l 
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The solution of problem (3.2)-(3.5) was expressed [1] in terms of the complex potential 

W(~) = Re ~0(~l + i~2) (3.6) 

It has been established that the region ~* is bounded by an ellipse, where its enlargement to the expanded 
complex plane represents the form of the exterior of the unit circle in conformal mapping: 

~= + i~2 = (o(;), (o(;) = Co; + c~; -I (3.7) 

(co) 2 = (4nT)-' P*(R~ + R~), c~ = cO(R ~ - R;)(R~ + R~) -I (3.8) 

The following expression is obtained for the derivative of the complex potential. 

q~'[¢o(;)l = c2;-J; c2 = -2c0 (R~ + R~)-~ (3.9) 

By means of the formula 

• .-  do.)(;)dr ~o[¢o(;)] = [ ~ [co(;))--~ ~, 

using relations (3.7) and (3.9), we obtain 

We determine the integration constant c3, satisfying boundary condition (3.3) with I ~ J = 1. As a result, 
we obtain 

c 3 =~io-(Co) (R i +R~) -I (3.11) 

Thus, according to (3.10) and (3.7), the function (3.8) has the following behaviour at infinity 

W ( ~  = -C2Co In(co I~ -~ I)+c; +O(I El-2), I El--* ** (3.12) 

Comparing (3.12) and (2.7), taking (3.8), (3.11) and (3.1) into account, we derive 

(c°)2 P* in r°. (3.13) 
R, + R; = 

Recalling the assumptions (1.4) and (2.3), we combine (3.13) and (3.8) into the single equation 

P (,+l. )= 
4roT p(Ri + R2) ) ~o (3.14) 

Equation (3.14) is used to determine the force P in terms of the displacement 80. 
We will introduce the dimensionless quantities 

Then, Eq. (3.14) takes the form 

/3 = P 8o 8o Rt + R2 
4 r ~ T r  o r o ro 

/3+ A-I/31n/3 = A-I~o, A = l + l n ( l / e )  (3.15) 

Equation (3.15) contains a large parameter A and in turn allows of an asymptotic solution (see [18, 
Chapter 1, Section 5]). 

Finally, the contact area Y. is close to elliptic. Its semiaxes to a.first approximation are calculated by 
means of formulae (1.6), where their arithmetic mean is Co = Ec0. 
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It is noteworthy that, in the axisymmetric problem, formula (3.14), expressing the dependence of the 
motion of the punch on the force acting on it, agrees with the accurate formula. 

4. MOMENTS OF THE SYSTEM OF LOADS THAT MAINTAINS THE 
PUNCH IN THE VERTICAL POSITION 

In the problem for the boundary layer (2.5), (2.7), the influence of the shape and dimensions of the 
membrane is taken into account in the formulation of asymptotic condition (2.7). The latter was obtained 
from formula (2.1), which can easily be made more precise. We have 

2_~ in i x_r0x 2 2 G(x°;x) = 01 4- ~ Bi(x i -x°i )+ ~. Cii(x , -x°i )(xi - x ° ) +  (4.1) 
i=1 i.j=l 

+O(I x - x °  13), x ---~ x ° 

The quantities B~, B2 and C21 = C12, C22 = -Cll ,  depending on the position of the point x °, have 
dimensions of L-'I ;and L-2, respectively (L is the dimension of length). 

Taking into account the first two terms of the sum (4.1), instead of (2.7) we can write 

w(e;~)=e2V*(19+e-.P'- In r° +O(l~l-J), I~l~** (4.2) 

V.(19= P* ,~ B~{i (4.3) 
T i=1 

The solution of problem (2.5), (4.2) will be presented in the form 

w(~; 19 = ~2 v'(19 + ~ w(19 

The function W satisfies relation (3.5) and the following relations 

(4.4) 

-a~w(19>~ o, w(19~ 8;-¢,*(19-ev'(19 

a~w(19[w(19-8; +,z,*(~)+Ev'(191=o, gE R ~ 
(4,5) 

Since the right-hand side of the second inequality of (4.5) is a second-degree polynomial, the solution 
of problem (4.5), (3.5) is constructed using well-known results [1]. Isolating complete squares, we obtain 

2 
• *(19+eV*(19 = Y. (2RT)-t({i _{f)2 +O(e2) (4.6) 

i=1 

~ =-eP*T-'R~B i (i= 1,2) (4.7) 

Since, when formulating (4.2), after the replacement of (2.4), only terms O(e I ~l) are retained in 
expansion (4.1) [see (4.3)], in formula (4.6) the constant of a higher order of smallness is not taken 
into account. 

Thus, within the accuracy adopted, the centre of the contact area is displaced to a point with 
coordinates (4.7) o1: [we return to the real scale, recalling formulae (1.5), (2.3) and (2.4)] 

x~. = x°i - PT-'RiB ̀  (i = 1,2) (4.8) 

The dimensions of the contact area E are defined as before by formulae (1.6), where, in the main, 
IXl nc~(1 2, = - rn ). Dependence (3.14) of the motion on the force does not change. Moments (1,7) 
are found by mean.,; of formulae (1.8) and (4.8) in the form 

M~ = P ' ~ ,  M~ = - P ° ~  (4.9) 
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M i =e2M/* ( i -  1,2) (4.10) 

Finally, instead of (3.12), we obtain the following expansion 

P" In c~ P* ~ ,  +~[~2 w(o=2n T l~l+2---~ ~ + ~  +O(1~1-2), I~1--~'0 (4.11) 

5. R E F I N E M E N T  OF THE C O N S T R U C T I O N  
OF THE A S Y M P T O T I C  F O R M  

Formula (4.11) dictates the renewal of external asymptotic representation (2.2). We will assume that 

u ( x ) = P G ( x ° ; x )  + ~ -~LGO)(x°;x) • (5.1) 
i=1 

Here, solutions are introduced for problems of the action on the membrane of concentrated 
moments 

1 x 2 - x  0 g(i)(x0 ; 
G0)(x0;x) = 27t I x -  x ° 12 I- x), (5.2) 

1 x~-x°12 +g(2)(xO;x), 
Gt2)(x°;x) = - 2--'n I x - x ° 

g")(x°;x)=A~i~+O(lx -x° I), x --*x° ( i=1,2) (5.3) 

Using (4.1) and (5.3) and taking (2.3) and (4.10) into account, we formulate the following asymptotic 
condition for the boundary layer [cf. (4.2) and (4.3)] 

w(g;~) = £2 V. (E;; ~) + E.~P* in c~ 
z ~ l  161 

-I 2~T ~2 + ~2 t- O(I ~ 1-2), J ~ I---~ *" (5.4) 

2 / 2 M," 
V*(I~;~ T ~i=1 i,j=l 

(5.5) 

Note that formulae (5.4) and (5.5) are derived by retaining previously unused terms (of higher order 
of smallness) in expansions (4.1) and (5.3). Here, use is made of information that the values of M~, 
according to relations (4.9) and (4.7), are of the order of e. 

Thus, for inner asymptotic expansion (4.4), problem (2.5), (5.4) is obtained. We will write its asymptotic 
solution. Since, generally speaking, the coefficient C12 is non-zero, the elliptic contact area is turned 
by a certain angle tO with respect to the coordinate axes. If R] = R~, then q0 is determined by the quadratic 
form 

2 
E cij , j 

i,j=l 

If, for example, R 1 > R2, then, apart from terms of the order of E 3 [formulae (5.4) and (5.5) are of this 
accuracy] 

= - e  2 2R R2 P" C,2 (5.6) 
R;-R; r 

The coordinates (4.8) of the centre of the contact area at a given stage are not refined° Its semiaxes 
eCo(1 + m) and ec0(1 - m) are calculated by means of the formulae [refining (1.6)] 
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@;)2 = 4 ~ T ( R  ' + R;)_e~ (p.)2 [(RJ') ~ - (R;)2]C~, 
2rcT 

(5.7) 

R; R, - R; r C,, (5.8) 

Within the accuracy adopted, the values of  M i are identical to (4.9). To determine P*, neglecting 
unimportant  terms, we derive the equation 

P" f l " 4~Tr~ 
+In  2 * • . / +  ( 5 . 9 )  

4nT~,  e V (R, + R ~ ) )  

+t:2 ( P  " ) T - 2 t R I  B, A (2) - R;B2A(o I) - (2re) -I  (R;' - R:;)CI i ] = ~o 

Thus, the refined relation between the force acting on the punch and its motion, according to (5.9), 
(1.4) and (2.3), is as follows: 

In 4"Tr°2 D( '+ , - , - -  
(5.10) 

Example. We will calculate the coefficients in relations (5.6)-(5.10) for a circular membrane of radius a. Using the 
conformal transformation of the circle to the unit circle, transferring the point x ° to the centre of the latter (see, 
for example [15, Section 32]), we find (for the notation, see Remark 2) 

z ~  I z - z " l  2~ a,'o ' - L a2 ) 

Hence, the coefficients in (4.1) are determined 

~o l (~p)~_(~)~ i ~p~o 
B~ . . . .  ; C~ j = - q 2  = - -  

2~ ar 0 2~ 2a2ro 2 CI2 = 2It a2ro 2 

The constant A~ i) = g(i)(x°; X 0) is sought as the arithmetic mean of the boundary values of the funct ion g(i)(x°; x) 
after they have been conformally transformed to the unit circle [see (5.2)]. As a result of simple calculations, we 
have 

4 ,  = i -4 4 ~ ) =  i ~,o 
2~ a t  o ' 21t ar 0 

6. R E M A R K S  

An attempt at subsequent complication of the construction of the asymptotic form leads to the appearance in the 
solution of the problem for the boundary layer of a deviation of the shape of the contact area from elliptic. A study 
of the variation of the contact area was undertaken [19, 20]. 

Formulae (5.6)-(5.8) indicate the sensitivity of the parameters of the contact area to the dimensions of the 
membrane and the position of the centre of the punch. Remember that the radius r0 and the quantities Bi, A~ i) and 
C# have dimensions alL,  L -1 and L -2, respectively. 

Note that, within 'the framework of the asymptotic model constructed [see, in particular, formulae (4.1), (4.7), 
(4.9) and (3.14), (5.].0)], the equilibrium position of a small sphere on a horizontal weightless membrane is the 
point of the local m~0dmum of the internal conformal radius (see also [16, Section 1.3]). 

If the region ~ is not simply connected, then for Green's function there is no simple relation with the conformal 
mapping (see [21, Section 223] and [22, Section 3, Chapter VI]). Nonetheless, the value of r0 (the harmonic radius 
of the region 0 will respect to the point x ) inherits [23] the main properties of the conformal radius (see [17, 
Section IV]). 
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